微小領域における 酸化物セラミックス の室温塑性変形

Room-temperature Plasticity of Oxide Ceramics at Small Scales Key-words : Nanoindentation, Microcompression, Dislocation

増田 紘士

Hiroshi MASUDA (The University of Tokyo)

1. はじめに

セラミックスは巨視的な塑性変形を困難とする脆性 材料であり、外力下においては、亀裂先端に発生する 応力集中を緩和できず容易に破壊する.この脆い性質 は、信頼性が最優先される構造材料としては致命的な 弱点であり、セラミックス研究における最大の課題で ある.以前より、塑性変形を用いた強靭化および脆性 低減の発想は存在したものの、セラミックスが巨視的 な可塑性を生じるのは、おおむね数百 ℃以上の高温 に限られるため、実用上クリティカルな室温環境では、 強靭化はもとより塑性変形挙動を適切に評価すること さえ困難であった.

近年, ナノインデンテーションやマイクロピラー圧 縮試験(図1)に代表される「微小力学試験」を用い ることで,室温においてもセラミックスが脆性破壊す ることなく塑性変形を示すことが知られるようになっ てきた¹⁾.この現象は,試験片寸法の低下にしたがっ て,脆性破壊の起点となる内部亀裂が消滅し,結果と してセラミックスが本来的に有する可塑性を顕在化さ せたものと解釈できる²⁾.

こうした微小領域における塑性変形を効果的に引き 出すための指導原理が得られれば, 亀裂先端での応力 遮蔽効果を高めた低脆性なセラミックスの創出につな

図1 (A)ナノインデンテーション試験、(B)マイクロピラー 圧縮試験の模式図

がると期待される.そのための基礎・基盤となるのは, セラミックスの変形挙動を正しく理解することにほか ならない.これまで筆者らは,微小力学試験を用いる ことで,室温における酸化物セラミックスの塑性変形 挙動を評価してきた.本稿では,これらの成果のうち, 特に微細構造(結晶方位および粒界・異相界面)が塑 性変形挙動におよぼす効果について紹介する^{3)~5)}.

2. 単結晶マイクロピラーの室温塑性変形³⁾

図2は、さまざまな結晶方位をもつ9.8 mol% Y₂O₃ 安定化立方晶 ZrO₂ (YSZ)単結晶から集束イオンビーム (FIB) により作製したマイクロピラーを、室温で 圧縮した際の応力-ひずみ曲線と、変形後のピラーの 走査電子顕微鏡 (SEM) 像を示す、この材料は、バ

 図2 (A)9.8 mol% YSZ における単結晶マイクロピラー圧 縮試験から得られた応力-ひずみ曲線,(B)[111]方位, (C)[112] 方位,(D)[101]方位,(E)[001]方位から 圧縮したピラーの SEM 像³⁾

ルク体であれば1~2 GPa 程度の圧縮応力で脆性的に 破壊するものの、マイクロピラー圧縮試験においては 7~10 GPa で降伏した後に塑性変形を生じた.特筆す べきは、[111]方位からの圧縮時には、公称ひずみ約 40%に至っても破断を生じない優れた可塑性が現れた 点である.

圧縮試験後のピラーを SEM で観察すると、側面に は特定の結晶面に沿ったコントラストが認められる. これらは「すべり線」と呼ばれ、転位による結晶学的 なすべり変形が生じた痕跡である. ここで注目したい のは、可塑性に優れる[111]ピラーと、早期破断した [112] ピラーとの差である。両者はいずれも {001}<110> すべりの活動により塑性変形したものの、すべり線の 特徴には明確な差が認められた. [111] ピラーの側面 では、複数の {001}<110> すべりが活動し(多重すべり)、 無数のすべり線が細かく分散していた(図2(B)). 一 方, [112] ピラーの側面では、単独の(001) [110] すべ りが活動しており(単一すべり),すべり線はピラー の上部に局在化していた(図2(C)).このように、結 品学的に等価なすべり系が活動したとしても、それら が多重すべりを起こした場合にのみ優れた可塑性が現 れた.

そこで筆者らは、結晶塑性有限要素法(CPFEM) によるシミュレーションを行い、多重すべりに起因し た適度な加工硬化が、すべりの局在化を抑制し、ピラー 全体の均一な変形につながることを確認した.つまり、 立方晶 YSZ ピラーの可塑性には、活動すべり系同士 の相互作用と、その結果としてもたらされる変形の均 一性が重要な役割を担うと考えられる.

それでは、多重すべりの発現が酸化物セラミックス における可塑性発現の必要条件と言えるであろうか? その答えは NO である。例えば、YSZ[101]ピラーや [001]ピラーでも多重すべりが生じたものの(図 2(D) および(E))、可塑性は限定的であった。それどころか、 YSZ 以外の酸化物の中には、多重すべりが可塑性を 阻害する事例も見つかっている。SrTiO₃単結晶ピラー は、{101}<101>を主すべり系とするが、これが多重 すべりを起こすと、すべり系同士が互いの活動を妨害 して早期破断に到った。一方、単一すべりを起こした 場合、すべりの局在化を抑えるように変形帯が形成し、 優れた可塑性が現れた。このように、立方晶構造をも つ YSZ と SrTiO₃ の間でも、可塑性を生じる原理は異 なる。

現時点で,酸化物マイクロピラーにおける可塑性発 現の必要条件をあげるならば,早期破断の原因となる 「すべり系同士の相互妨害」および「すべりの局在化」 を同時に避けることと言えよう.しかし,この条件を 満たす変形機構は材料ごとにさまざまであり,今後も 継続した調査が必要である.

3. 微細共晶組織の導入による可塑性向上⁴⁾

現在,筆者らが強く関心をもっているのは,こうしたセラミックスの内因的な可塑性を積極的に引き出す 組織制御手法を獲得することである.

図3(A)は、電場を用いた強制溶融および急速凝固⁶⁾ によって作製した Al₂O₃-GdAlO₃ 共晶セラミックスに 対して、室温でマイクロピラー圧縮試験を実施した際 の応力-ひずみ曲線を示す、構成相である Al₂O₃ およ び GdAlO₃ 単結晶は、たとえマイクロピラー圧縮試験 であっても単独では可塑性を示さず脆性破壊を生じた が、Al₂O₃-GdAlO₃ 共晶からなるマイクロピラーは、 その多くが 10 GPa 以下の応力で降伏して可塑性を示し、 破断に到るまでに数パーセントの塑性ひずみを呈した、 これまでも、脆性相と延性相を組み合わせることで可 塑性が発現する複合材料は数多く報告されてきたが、 今回のように、脆性相同士の組み合わせで可塑性が生

 図3 (A) Al₂O₃ 単結晶, GdAlO₃ 単結晶, Al₂O₃-GdAlO₃ 共 晶のマイクロピラー圧縮試験から得られた応力ひずみ 曲線. ここでは圧縮軸と共晶成長方位のなす角をθで 示す. (B) 変形後の Al₂O₃-GdAlO₃ 共晶 ピラー(θ= 37.6°)から, Al₂O₃ (0001) 面と平行に切り出した切片 の明視野 TEM 像および(C) 暗視野 TEM 像⁴⁾

まれるケースは極めて珍しい.

透過型電子顕微鏡(TEM)による変形後の組織観 察では、各構成相のうち特に硬質な Al₂O₂相内に多く の転位が認められた(図3(B)および(C)).特に、 室温では不活性だと考えられてきた(0001)<1120> 底面転位が観察されたことは注目に値する. こうした 転位運動の活性化が、Al₂O₃-GdAlO₃ 共晶ピラーにお ける降伏応力の低下と可塑性の発現につながったと考 えられる. このメカニズムは現在も調査中だが、特に 筆者らが注目しているのは、Al₂O₃/GdAlO₃界面が比 較的低い応力で転位源として作用した可能性である. 一般に、材料中の界面は塑性変形を阻害する存在とみ なされてきた.しかし,数 GPa を超える高応力下で, かつ結晶内部に転位源が存在しない微小領域では、界 面が塑性変形を促進しても不思議ではない. この考え は、セラミックスの脆性克服に向けた新たな指針とな るかもしれない.

4. 粒界が変形強度に与える効果⁵⁾

ここまでは単結晶領域における微小力学試験の事例 を紹介してきたが、実用的なセラミックスのほとんど は、焼結によって得られる多結晶体である。多結晶体 の塑性変形を取り扱うためには粒界の役割を明らかに する必要がある。そこで筆者らは、さまざまな酸化物 セラミックス(YSZ、SrTiO₃、Al₂O₃)に対してナノ インデンテーション試験を実施し、粒界が局所的な硬 度変化に与える影響を調査した。なお、Hall-Petch 則に従う金属材料では、粒界が転位運動を阻害するた め、粒界近傍では硬さが上昇することが知られている⁷⁰. 筆者らは、セラミックスにおいても同様の傾向が観測 されることを予想して試験を行った。

図 4(A) は、 Σ 9 対称傾角粒界をもつ 9.8 mol% YSZ 双結晶に対する室温でのナノインデンテーショ ン試験から得られた,粒界を横断する硬さプロファイ ルを示す.ここで利用した双結晶は、2枚の単結晶を 貼り合わせ、1600 $\mathbb{C} \times 15$ h の拡散接合により作製し たものである.得られた硬さプロファイルはほぼ完全 に平坦であり、粒内・粒界近傍ともに、およそ18.3 ± 0.3 GPa の区間に収まっていた.当初の予想に反して、 粒界近傍での有意な硬さ変化は認められず、この傾向 は粒界性格(対応粒界 vs. ランダム粒界)、粒界に対 する押し込み角度(edge-on vs. in-plane)、試験温度(最 高 400 \mathbb{C}) にもよらなかった.SrTiO₃ 双結晶(Σ 5 対 称傾角粒界)および Al₂O₃ 多結晶体(平均粒径 5.9 μ m) でも同様の傾向が観察され、材料依存性も認められな かった. それでは、酸化物セラミックスの粒界は転位運動の 障壁とはならないのか?この疑問に答えるため、筆者 らは、粒界ごく近傍で試験された圧痕直下の領域を FIBによって薄片化し、TEM観察を実施した(図4(B)). 圧痕直下には塑性変形を担った転位が多く観察され、 これらの転位の多くは粒界にパイルアップしていた. また、右側の結晶内では転位は全く観察されなかった. この観察結果は、粒界が転位運動の障壁として作用し たことを明確に示しており、SrTiO₃双結晶に対する TEM 内その場観察⁸⁾による報告とも一致している.

ナノインデンテーション試験および TEM 観察の結 果をふまえて,筆者らは「酸化物セラミックスの粒界 は転位運動の障壁となるが,硬度上昇に与える影響は 小さく,本実験の計測精度ではとらえきれなかった」 との解釈に到っている.この考えを受け,ビッカース 硬さ試験によって過去に報告されたセラミックスの Hall-Petch パラメータを再評価することとした.多

図4 (A)9.8 mol% YSZ 双結晶のナノインデンテーション
試験から得られた粒界近傍での硬さプロファイル,(B)
粒界近傍で試験された圧痕直下における明視野 TEM
像⁵⁾

結晶材料の降伏応力 σ_y は、粒径dの関数として下記の Hall-Petch の式で表される.

$$\sigma_y = \sigma_0 + k / \sqrt{d} \tag{1}$$

ここで、 σ_0 は摩擦応力、kは Hall-Petch 係数であり、 それぞれ粒内および粒界における変形抵抗を反映する 材料パラメータである。多くの酸化物セラミックスで は、これらの比が $k/\sigma_0=0.1 \ \mu m^{0.5}$ 程度のオーダーと なり、金属材料と比べて 1/10 から 1/100 程度の小さ な値をとることがわかった。つまり、酸化物セラミッ クスにおいては、粒内に対する粒界の相対的な強度比 率が、金属材料の場合と比較して格段に低いと言える。

ある意味,酸化物セラミックスの粒界は塑性変形を それほど大きくは阻害しないとの見方が成り立つかも しれない.とはいえ,ナノインデンテーション試験で 評価できるのは,塑性変形挙動のうち強度に関連した 側面に限られており,可塑性を考慮した議論は難しい. また,粒界は亀裂進展経路ともなる重要な構造である. 可塑性および靭性に対する影響も含めて,粒界の役割 については今後もさらなる調査が必要である.

5. おわりに

巨視的には脆いセラミックスも、微視的スケールで は室温であっても転位運動による塑性変形を生じる. セラミックスの脆性的な振る舞いが、材料固有の絶対 的な性質でないことは明らかであろう.筆者としては、 微小領域における室温塑性変形の理解をさらに深める ことが、セラミックスの脆性克服につながるものと期 待している.特に、セラミックスの脆性破壊は、亀裂 先端での局所的な応力集中によって発生する.このよ うな局所領域において、より効果的に可塑性を引き出 すことができれば、亀裂先端での応力遮蔽効果を高め た低脆性なセラミックスの創出につながるであろう. そのためには、可塑性と微細組織の関係を明らかにす るとともに、望ましい微細組織を得るためのプロセス 技術を獲得することが必要となる.その一例として、 本稿で取り上げた Al₂O₃-GdAlO₃ 共晶セラミックスは、 電場による強制溶融および急速凝固によって得られた 材料である.このように、従来の焼結法の枠組みを超 えた新プロセスの活用にも注目したい.

謝辞本稿にまとめた内容は、吉田英弘教授・栃木栄太准 教授・青木勇太氏・中村綾氏(東京大学)、奥山彫夢准教授(木 更津高専)らとの共同研究によって得られた成果に基づくもの です、この場を借りて深く謝意を表します。

文 献

- 1) S. Korte-Kerzel, MRS Commun., 7, 109 (2017).
- 2) 増田紘士, まてりあ, 60,96 (2021).
- H. Masuda, Y. Okuyama and H. Yoshida, J. Am. Ceram. Soc., 108, e20476 (2025).
- Y. Aoki, H. Masuda, E. Tochigi and H. Yoshida, Nat. Commun., 15, 8700 (2024).
- R. Nakamura, H. Masuda and H. Yoshida, J. Am. Ceram. Soc., 106, 2061 (2023).
- Y. Aoki, H. Masuda and H. Yoshida, J. Am. Ceram. Soc., 106, 3336 (2023).
- 7) T. Ohmura, K. Tsuzaki and F. Yin, *Mater. Trans.*, **46**, 2026 (2005).
- S. Kondo, T. Mitsuma, N. Shibata and Y. Ikuhara, *Sci. Adv.*, 2, e1501926 (2016).

筆者紹介

増田 紘士(ますだ ひろし)
2018年より物質・材料研究機構 ICYS 研究員
を経て、2019年より東京大学大学院工学系研究
科助教、2023年より同講師として勤務. 無機材
料の力学特性・プロセス研究に従事している.
[連絡先] 〒113-8656 東京都文京区本郷7-3-1
東京大学大学院工学系研究科マテリアル工学専攻
E-mail: masuda@material.tu-tokyo.ac.jp