硬質脆性材料単結晶 の室温マイクロピラー 圧縮変形

Room-Temperature Plastic Deformation of Single Crystals of Hard and Brittle Materials Investigated by Micropillar Compression **Key-words** : Hard and brittle materials, Micropillar compression, Dislocations, Zonal dislocations

Kyosuke KISHIDA (Kyoto University)

1. はじめに

セラミックス材料(炭化物,窒化物,酸化物,硼化 物など)や複雑な結晶構造を有する金属間化合物材料 (Laves 相, σ 相, μ 相など) は、一般に拡散が十分な 速度で起きるよう高温域でしか塑性変形せず、室温付 近の温度域では高強度ではあるが脆性的な性質を示す 硬質脆性材料である. これらの硬質脆性材料が低温で 脆性的な性質を示す原因としては、金属材料で見られ るような転位の運動を介したすべり変形が低温では十 分に生じないといった本質的要因や、結晶粒界の脆弱 性などの外的要因が考えられるが、このうち特に前者 についてはこれまでのところ十分な実験的検証が行わ れておらず不明な点が多い.本稿では,新しい力学特 性評価法である単結晶マイクロピラー圧縮試験法と. 精密な転位構造解析により調査した各種硬質脆性材料 の室温塑性変形に関する最新の研究成果について紹介 する 1)~7)

2. マイクロピラー圧縮試験法

マイクロピラー圧縮試験法は数µm 程度のサイズ領 域における各種金属材料単結晶の力学特性を調査する 目的で2000年代初頭に新しく考案された機械試験法で、 集束イオンビーム(Focused Ion Beam: FIB)加工な どにより作製した単結晶マイクロピラー試験片をフラッ トパンチ型の圧子を備えたナノインデンテーション装 置を用いて圧縮試験するというものである^{8)~10)}. 面 心立方(FCC)金属や体心立方(BCC)金属に関す る初期の研究では、ストレインバースト現象(一定の 応力で急激に塑性ひずみが増大する現象)や強度の試 験片サイズ依存性(試験片サイズの減少に伴ってすべ り変形の臨界分解せん断応力が上昇する現象)など、 微小サイズ領域における単結晶に特有の特異な変形挙 動が報告されている^{8)~11)}.また GaAs や Si などの半 導体材料への適用例において、試料サイズの減少に伴 い塑性変形を発現することが確認された^{12)~15)}ことか ら、近年では特に硬質脆性材料の力学特性評価、変形 機構解析に有効な実験手法として注目されてい る^{1)~7).16).17)}.

3. 硬質脆性材料への適用例

図1に硬質脆性材料の単結晶マイクロピラー圧縮試 験例を示す. 金属材料に関する先行研究ではしばしば 円柱形上のマイクロピラー試験片が用いられていれ る^{8)~15)}が、図に示す例ではすべり系の同定を主たる 目的の一つとしているため、すべり系の同定が容易 な四角柱形状としてある.半導体結晶(6H-SiC²⁾), 遷移金属炭化物 (WC^{6}) , $Cr_{23}C_{6}^{(7)}$), 遷移金属硼化物 (ZrB_2^{3}) , 金属間化合物材料 (Mo₅SiB₂¹⁾, σ -FeCr^{4),5)}) のいずれにおいても明瞭なすべり線が確認でき、室温 ですべり変形が生じたことが確認できる. これらのマ イクロピラー試験片はいずれも一つの側面に予想され るすべり方向が含まれるように作製してあり、すべり 方向を含まない側面では明瞭なすべり線(図中の実線 に平行)が観察されるのに対しすべり方向を含む側面 上ではほとんどすべり線が観察されなくなる(図中で は点線でトレースを表示)という性質を利用すること ですべり面だけでなくすべり方向の一義的な決定をも 可能となっている¹⁷⁾. このようなマイクロピラー圧 縮試験を荷重軸の関数として系統的に行うことにより, 対称性の低い結晶構造を有する金属間化合物材料 (Mo_5SiB_2 , σ -FeCr など) では複数のすべり系が活動 可能であることが新たに見出されている^{1),4),5)}.

図1に示すすべり線解析により同定したすべり系の 臨界分解せん断応力(CRSS)の試験片サイズ依存性

図1 圧縮試験後の単結晶マイクロピラーの外観.

を図2に示す. 図中では比較のため, FCC 金属および BCC 金属の例も示してある. 一般に CRSS(τ_{CRSS})と試験片サイズ(円柱形状のマイクロピラーでは断面の直径, 四角柱形状のマイクロピラーでは断面の一片

の長さL)との関係はべき乗則で近似される^{8)~11)}.

 $\tau_{\text{CRSS}} \propto L^{-n}$ (n:べき乗指数) (1)べき乗指数nは材料に依存して0から1の間の値を とることが明らかにされており、一般的には強度の低 い材料ほど高い値(FCC金属: 0.6~1, BCC金属: 0.3~ 0.5) をとる傾向をしめすことが明らかにされてい る^{8)~11)}.これに対して図2に示すように硬質脆性材 料では CRSS の値が1 GPa 以上と非常に高く、べき 乗指数は0~0.2程度の値となり、CRSS はあまり試験 片サイズに依存しないことがわかる. CRSS の試験片 サイズ依存性を説明するモデルとしてさまざまなもの が提案されているが. FCC 金属や BCC 金属に関して はシングルアーム転位源 (Single-Arm Source, SAS) モデルに基づいた解釈が広く受け入れられてい る^{18),19)}.通常の金属材料では材料内部にもともと存 在していたフランクリード転位源からの転位の急激な 増殖により塑性変形が開始するが、マイクロピラー試 験片ではフランクリード転位源が試料表面で切断され たシングルアーム転位源が転位源となる. SAS モデ ルはシングルアーム転位源から転位を増殖させるのに 必要なせん断応力は転位源の長さに反比例するため, 試験片サイズの減少に伴い CRSS が増加する傾向を示 すとするモデルである. SAS モデルはマイクロピラー 試験片の内部に一つ以上の転位源が存在している場合, かつマイクロピラー試験片のサイズがフランクリード 転位源のサイズより十分に小さいサイズ領域では有効 なモデルと考えられる.一方で、SAS モデルが適用 可能なサイズ領域よりもさらに小さいサイズ領域など,

図3 早期破壊の起点となる内在欠陥の臨界サイズの圧縮応 力および破壊靭性値 K_{IC} 依存性.

マイクロピラー試験片内部に活動可能な転位源が含ま れない場合には、試料表面で新しい転位を作り出すの に必要な応力が CRSS に相当するという表面転位核生 成モデルが提案され、表面転位核生成モデルのほうが 弱いサイズ依存性(nが0に近い)を示すことが実験、 計算の両面で確認されている^{20).21)}.硬質脆性材料の 場合、とりわけ複雑な結晶構造を有する結晶などでは 転位のバーガースベクトルの候補となりうる結晶格子 の並進ベクトルが非常に長いため、転位源として活動 しうる Grown-in 転位がそもそも存在していない可能 性が高く、CRSS は試料表面からの転位導入に必要な 応力に相当すると考えるのが妥当であろう.

4. サイズ減少に伴う早期破壊抑制効果

硬質脆性材料の単結晶マイクロピラー圧縮試験にお いて脆性---延性遷移温度以下の温度域において塑性変 形が観察される理由については、以下のように考察す ることができる。脆性材料の圧縮試験では一般に縦割 れの発生による早期破壊が問題となる^{22)~24)}.縦割れ の起点として荷重軸に平行な長さしの微小欠陥を考え ると、そこからのクラック伝播に必要な臨界圧縮応力 σ_{c} は $CK_{\rm IC}/(\pi l)^{1/2}$ で近似される $^{22)\sim 24)}$.ここでCは一 桁のオーダーの定数, Kuc は破壊靭性値である. 微小 欠陥からのクラック伝播(早期破壊)を起こさずに降 伏応力 σ_v に到達するには、微小欠陥が臨界サイズ l_c (= $(CK_{\rm IC}/\sigma_{\rm v})^2/\pi)$ よりも小さい必要がある. 図3に早期 破壊の起点となる内在微小欠陥の臨界サイズの圧縮応 力および K_{IC} 依存性を示す (C=1としてある). 例え ば K_{IC} = 1.5 MPa m^{1/2},降伏応力が 13 GPa である結晶 の場合には、図3から微小欠陥のサイズは数 nm 以下

 図4 σ-FeCr 相における Zonal 転位. (a) 高分解能 STEM 像, (b) 転位芯領域での協調的原子移動モデルの一例.

でなければ塑性変形させることができないことがわか る.バルクサイズの試料では試料内部や試料表面にこ のような微小欠陥が不可避に存在すると考えられるが、 マイクロピラー試験片では、サイズの減少に伴い試料 内部の微小欠陥が含まれない確率が高くなるとともに、 FIB 加工での表面仕上げにより表面微小欠陥も除去さ れる可能性が高い.このような理由により、単結晶マ イクロピラーの圧縮試験では微小欠陥を起点とした早 期破壊が抑制され、すべり変形の開始応力に到達でき た、と考えることができる.

5. 硬質脆性相で活動する転位

硬質脆性材料は一般に高融点であり,バルクサイズ の試験片ですべり変形が観察されるのは拡散が十分に 起きるような高温域で機械試験を行った場合に限定さ れることがほとんどである.高温機械試験では試験中 あるいは試験後の降温中に転位の上昇運動,転位間の 反応,転位芯構造の変化といった組織変化が生じる可 能性を完全に除外することが困難であるため,変形後 の試料中の転位組織観察のみに基づいたすべり系の同 定や変形機構の考察には不確かさが含まれることに注 意が必要である.これに対し、単結晶マイクロピラー 圧縮試験により室温で導入された転位では上述のよう な高温特有の組織変化が生じていないと考えられるた め、より正確な変形機構の解明に適していると考えら れる.以下では複雑な結晶構造を有する金属間化合物 σ -FeCr中で観察された特異な転位(Zonal転位)の 観察例を紹介する^{4.5}.

σ相の結晶構造は正方晶 D8h型(空間群: P4y/ *mnm*, 軸比:~0.5) であり, 3種の原子層(A, B, C原子層)が c 軸方向に ACBC の順で積層した構造 と記述することができる^{4),5),25)}.3種の原子層のうちA, B原子層はともにカゴメ型原子配置をとるが、その原 子配列は c 軸周りに互いに 90 度回転した関係にある. このような結晶構造を有する σ-FeCr 相の単結晶マイ クロピラー圧縮試験を行ったところ、図1(f)に示す ように(110)[001]すべりをはじめとする複数のすべり 系の選択的活性化に成功した。(110)[001] すべりによ り導入されたバーガースベクトルb=[001]の刃状転 位の転位芯構造の原子分解能走査透過電子顕微鏡 (STEM) 像を図4に示す. 図4から明らかなように、 b=[001]の完全転位は同一のバーガースベクトル (b=1/2[001]) を有する2本の部分転位に分解して いるが、部分転位の存在するすべり面が単一の(110) 面上ではなく,異なる(110)面上にある点(図4中で は上で部分転位のおよその位置を示してある). さら にこれらの部分転位の左右両側ともに原子の配列は完 全転位のものと同一であり,積層欠陥の形成は認めら れないという点が、一般的な拡張転位の特徴(同一の すべり面上での部分転位への分解と, 部分転位間での 積層欠陥形成)とは大きく異なっていることがわかる. このような特徴はこの転位が Kronberg 博士が提唱し た Zonal 転位という特殊な転位であることを示してい る²⁶⁾. Zonal 転位とは複数の原子層からなるシアーゾー ン内の原子が協調的原子移動(すべり面内の方向だけ でなくすべり面外の方向への短距離変位も含む)する 結果として、シアーゾーンの上下の結晶間にマクロな すべり方向へのずれが生じるようなせん断変形を担う 転位として定義される。図4(a)に示す σ-FeCr 相中 の[001]転位では、転位芯の部分においてカゴメ A 層 がカゴメ B 層の原子配列を, 逆にカゴメ B 層はカゴ メA層の原子配列をとるような段階的な構造変化 (図4(b)は観察結果を再現しうる協調的原子移動モデ ルの一例)が生じていると考えられる. σ-FeCr 相中 の Zonal 転位の詳細については文献4,5を参照され たい. 以上のように非常に複雑な結晶構造を有する σ-FeCr 相の室温塑性変形が協調的原子移動を伴う

Zonal 転位の運動により生じているということは特筆 すべきことであるだけでなく,他の複雑結晶構造を有 する硬質脆性材料の塑性変形挙動を調査する際にも, 通常の転位だけでなく Zonal 転位をはじめとする特異 な転位^{26).27)}の活動可能性をも考慮に入れなければな らないことを示唆している.単結晶マイクロピラー圧 縮試験法は転位芯構造の精密解析を容易にするという 点からも、複雑結晶構造を有する硬質脆性材料の力学 特性と塑性変形機構の解明に対して特に有効な実験手 法と言えよう.

6. おわりに

単結晶マイクロピラー圧縮試験法と精密な転位芯構 造解析を組み合わせた著者らの最新の研究を中心に概 説した.今後,同様の手法を駆使した実験研究をさら に発展させると同時に第一原理計算などの理論計算を 組み合わせることにより,硬質脆性相の本質的な力学 特性と変形機構の解明が進み,硬質脆性相のもつ優れ た力学特性を最大限に活用する材料設計指針が確立さ れることを期待している.

謝 辞 本稿で紹介した研究成果は,京都大学大学院工学研 究科材料工学専攻 乾 晴行教授のご指導の下で得られたもの です.ここに深く感謝申し上げます.

文 献

- K. Kishida, T. Maruyama, H. Matsunoshita, T. Fukuyama and H. Inui, *Acta Mater.*, 159, 416 (2018).
- K. Kishida, Y. Shinkai and H. Inui, Acta Mater., 187, 19 (2020).
- Z. Chen, B. Paul, S. Majumdar, N. L. Okamoto, K. Kishida, H. Inui and S. Otani, *Sci. Rep.*, 11, 14265 (2021).
- K. Kishida, M. Okutani and H. Inui, Acta Mater., 228, 117756 (2022).
- 5) K. Kishida, M. Okutani, H. Suzuki, H. Inui, M. Heilmaier and D. Raabe, *Acta Mater.*, **249**, 118829 (2023).
- K. Kishida, M. Morisaki, M. Ito, Z. Wang and H. Inui, Acta Mater., 260, 119302 (2023).
- 7) K. Kishida, M. Ito, H. Inui, M. Heilmaier and G. Eggeler,

Acta Mater., 263, 119518 (2024).

- M. D. Uchic, D. M. Dimiduk, J. N. Florando and W. D. Nix, Science, 305, 986 (2004).
- D. M. Dimiduk, M. D. Uchic and T. A. Parthasarathy, Acta Mater., 53, 4065 (2005).
- M. D. Uchic, P. A. Shade and D. M. Dimuduk, Annu. Rev. Mater. Res., 39, 161 (2009).
- A. S. Schneider, D. Kaufmann, B. G. Clark, C. P. Frick, P. A. Gruber, R. Mönig, O. Kraft and E. Arzt, *Phys. Rev. Let.* 103, 105501 (2009).
- 12) J. Michler, K. Wasmer, S. Meier, F. Östlund and K. Leifer, *Appl. Phys. Let.*, **90**, 043123 (2007).
- 13) B. Moser, K. Wasmer, L. Barbieri and J. Michler, J. Mater. Res., 22, 1004 (2007).
- 14) F. Östlund, K. Rzepiejewska-Malyska, K. Keifer, L. M. Hale, Y. Tang, R. Ballarini, W. W. Gerberich and J. Michler, *Adv. Func. Mater.*, **19**, 2439 (2009).
- 15) S. Korte, J. S. Barnard, R. J. Stearn and W. J. Clegg, Int. J. Plast., 27, 1853 (2011).
- 16) S. Korte-Kerzel, MRS Comm., 7, 109 (2017).
- 17) 岸田恭輔, まてりあ, 62,680 (2023).
- 18) T. A. Parthasarathy, S. I. Rao, D. M. Dimiduk, M. D. Uchic and D. R. Trinkle, Scr. Mater., 56, 313 (2007).
- 19) S.-W. Lee and W. D. Nix, Philos. Mag., 92, 1238 (2012).
- H. Bei, S. Shim, G. M. Pharr and E. P. George, *Acta Mater.*, 56, 4762 (2008).
- I. Ryu, W. Cai, W. D. Nix and H. Gao, Acta Mater., 95, 176 (2015).
- 22) M. F. Ashby and S. D. Hallen, Acta Metall., 34, 497 (1986).
- 23) C. G. Sammis and M. F. Ashby, Acta Metall., 34, 511 (1986).
- 24) M. F. Ashby and C. G. Sammis, Pure Appl. Geophys., 133, 489 (1990).
- 25) G. Bergman and D. P. Shoemaker, Acta Cryst., 7, 857 (1954).
- 26) M. L. Kronberg, J. Nucl. Mater., 1, 85 (1959).
- 27) M. L. Kronberg, Acta Metall., 5, 507 (1957).

筆者紹介

岸田 恭輔 (きしだ きょうすけ)

京都大学大学院工学研究科材料工学専攻教授. 構造用材料の力学特性,結晶欠陥に関する研究に 従事. 微小試験片を用いた力学特性評価,透過電 子顕微鏡法を用いた結晶・欠陥構造解析を中心に 活動

[連絡先] 〒606-8501 京都市左京区吉田本町 京都大学大学院工学研究科材料工学専攻 E-mail:kishida.kyosuke.6w@kyoto-u.ac.jp

