汎用原子 レベルシミュレータ を用いた物性予測と 材料探索

Property Prediction and Materials Discovery Using a Generalpurpose Atomic-level Simulator

Key-words : Materials discovery, Machine learning potential, Lattice thermal conductivity, Crystal structure prediction

篠原 航平 Kohei SHINOHARA (Preferred Networks, Inc.)

1. はじめに

Preferred Networks (PFN)では、チップ・計算 基盤・基盤モデル・製品まで、AI技術のバリューチェー ンを垂直統合し、ソフトウェアとハードウェアを高度 に融合することで、競争力の高い技術の開発および産 業応用を進めている。その中でも、素材・化学分野で は、持続可能な未来を実現する新しい電池材料、半導 体、合成燃料向け触媒、潤滑剤などの新素材の探索を 従来の1万倍以上高速化する汎用原子レベルシミュレー ター MatlantisTMを ENEOS と共同で開発している。 共同出資会社 Preferred Computational Chemistry (PFCC)を通して、MatlantisTMをクラウドサービス として国内外 100 以上の企業・団体に提供している。

筆者の所属する PFN の材料探索チームでは, Matlantis[™]のコア技術となっている汎用機械学習ポ テンシャル PFP^{1)~3)}を中心として,計算化学分野と AI 技術を融合させた研究開発を行っている.本稿では, 計算材料科学やマテリアルズ・インフォマティクスの 適用事例として, PFPを用いた物性予測と材料探索 の事例を2件紹介する.

2. PFP を用いた格子熱伝導率計算による予測 精度の検証

PFP を用いた研究開発を行っていくうえで、その 予測精度をさまざまな計算対象で検証することは重要 な取り組みである.ここでは、近年公開された汎用機 械学習ポテンシャルに対する格子熱伝導率のベンチマー クを用いて PFP の精度検証を行った事例を紹介する(会 社ブログ⁴⁾の内容を元にしている).

機械学習の発展に伴い、DFT 計算と同等の高精度 とスケーラビリティの両立を目指した機械学習ポテン シャルが活発に開発されている。特に、元素によらず にさまざまな材料に適用可能な汎用機械学習ポテンシャ ル (Universal Machine Learning Potential, UMLP) が近年急速に実現されてきた。2025年現在、学術機 関だけでなく、DeepMind (GNoME⁵⁾), Microsoft (MatterSim⁶⁾), Meta (EquiformerV2-OMat24⁷⁾) な どの企業も、開発した UMLP を次々と発表している. しかし、これら UMLP のベンチマークとして広く使 われている Matbench Discovery⁹⁾ のリーダーボード は飽和状態になりつつあり、多くの UMLP が当初か らのベンチマーク⁸⁾ に過適合しているのではないか という懸念がある、このベンチマークでは、結晶構造 のポテンシャルエネルギーの局所安定点での値のみを 評価するが、格子の振動・拡散・化学反応などの多く の材料特性はポテンシャルエネルギーのより広い範囲 でのふるまいに依存する.

そこで, 格子熱伝導率(Lattice Thermal Conductivity, LTC)の計算に特化した新たなベンチマークとして, k_SRME が近年提案されている^{10),11)}. LTC は工学的に重要な熱特性であるだけでなく,ポテンシャルエネルギー局面の高次微分を必要とする. そのため,安定構造付近のポテンシャルエネルギー曲面の滑らかさが要求され,UMLPをより厳しく評価 することができる.

ここでは、k_SRME を用いて、PFP v6 の性能を評価した結果を紹介する. なお、PFP v6 は k_SRME の 公開前である 2024 年 4 月にリリースされたモデルで あり、今回の用途でファインチューニングされたもの ではない.

まず、k_SRME における LTC 計算方法とデータセットの概要を説明する. LTC の計算には phono3py を 使用し、緩和時間近似に基づいて LTC を求める $^{12)\sim14}$. フォノン – フォノン相互作用は、有限変位 を伴うスーパーセル法により求められた 2 次および 3 次の力の定数から計算される. その後、LTC 予測値を、 PhononDB $^{15)}$ と同様の 103 種類の二元化合物を含む PhononDB-PBE データセットの DFT 計算結果と比較する.

LTC の計算には、基本的にデフォルト設定の計算 条件を使用した. 具体的には、FIRE による2段階の 構造緩和計算で、FrechetCellFilter、fmax=10⁻⁴、 max_steps=300を指定した. 注目すべき点として、 UMLP による LTC 計算では、力の定数計算時の変位 距離 (distance) が結果に大きく影響することがわかった. そこで,変位距離 0.03 Å (デフォルト)・0.05 Å・0.1 Å の 3 種類で評価を行った.

表1に, PhononDB-PBE データセットにおけ る, PFP v6 と 他 の UMLP (MACE-MPA-0³³⁾, MatterSim-v1⁶⁾)のLTC 計算誤差を示す. 誤差は, LTC の mean Symmetric Relative error (mSRE)と 各フォノンの mean Symmetric Relative Mean Error (mSRME)で定量化されている¹⁰⁾.まず, MACE-MPA-0, MatterSim-v1 に対して再現実験を行ったが, 変位距離 0.03 Å の結果は元の結果と同程度である.

表1 PhononDB-PBE データセットにおける格子熱伝導度 の予測誤差

	mSRE (↓)	mSRME (↓)
PFP-v6 (distance = 0.03)	0.530	0.656
PFP-v6 (distance = 0.05)	0.365	0.502
PFP-v6 (distance = 0.1)	0.245	0.374
MACE-MPA-0 (distance = 0.03)	0.205	0.412
MACE-MPA-0 (distance = 0.05)	0.204	0.411
MACE-MPA-0 (distance=0.1)	0.206	0.412
MatterSim-v1 (distance = 0.03)	0.413	0.575
MatterSim-v1 (distance = 0.05)	0.403	0.566
MatterSim-v1 (distance=0.1)	0.366	0.541
MACE-MPA-0 ¹¹⁾	0.205	0.412
MatterSim-v1 ¹¹⁾	0.413	0.575

図1 PhononDB-PBE データセットの構造における,300 KでのLTCの,PFP v6とDFT-PBEの比較.マーカー の形状と色は、化合物の代表構造(岩塩、閃亜鉛鉱、 ウルツ鉱のいずれか)を示す.破線は、完全一致(対 数プロット上の直線)からのずれが50%と200%まで の範囲を示す.

また、変位距離が大きい(0.1 Å) 方が、UMLPの LTC 計算結果が向上する傾向があり、特に PFP v6 ではその効果が顕著である.変位距離 0.1 Å の PFP v6 は、他の UMLP よりも優れた性能(mSRME 0.374) を発揮していることが分かる.図1は、PFP v6(変 位距離 0.1 Å)と DFT-PBE による LTC の比較を、 対数プロットで示している.PFP v6 は、103 種類の 化合物のうち 100 種類で、LTC を 2 倍以内の精度で 予測できている.

以上, PFP v6 は, 格子熱伝導率予測のベンチマー クにおいて, 現在の最高精度を実現することを示した. また, 通常 DFT 計算で使われる値と比べて変位距離0.1 Å というのは大きい値であるが, 多くの UMLP は, 予測精度の面ではこのような大きな変位距離を好む傾 向があることをみた. 参考までに, 最近では他の研究 グループから LTC 計算を意識したモデルが発表され ており, UMLP を用いた大規模 LTC 計算の事例も出 てきている^{16),17)}.

3. PFP を用いた結晶構造探索と自由エネルギー 計算

次に PFP を用いた結晶構造探索および熱物性計算 の事例について述べる。

結晶構造予測(Crystal Structure Prediction, CSP)は、 特定の元素種内で安定した結晶構造を予測する重要な 問題である¹⁸⁾. 従来,CSP 手法は密度汎関数理論 (Density Functional Theory, DFT)に基づく第一原 理計算と組み合わせて候補構造の形成エネルギーを評 価するのが主であった¹⁹⁾.しかし、大規模なDFT計 算は時間がかかるため、多数の候補構造を網羅的に探 索することが難しくなる.また、特定の組成に対する CSP 手法は良く研究されているが、三元系以上の多 元系で全組成空間を探索したり、有限温度での自由エ ネルギーに拡張したりすることには未だ課題がある.

近年、UMLPの最近の大きな進展が、この課題に 対する有望な解決策として上がっている.結晶構造間 のエネルギー差を区別できるようなUMLPを用いる ことで、迅速かつ正確なエネルギー評価を提供でき、 CSPを効率的に解くことが期待できる.

そこで我々は PFP を用いて組成・結晶構造の両方 を探索する CSP 手法を開発した²⁰⁾. 候補となる結晶 構造はランダム生成^{21),22)} と遺伝的アルゴリズム²³⁾ による突然変異・交叉によって生成する.そして,生 成した結晶構造を用いてエネルギー計算する結晶構造 をサンプリングする.このとき,多目的最適化の分野 で使われる NSGA-III アルゴリズム²⁴⁾ を拡張して,

図2 CSP 探索で得られた Ti-O 系0K 相図. 緑色の丸は convex hull 上の構造を示す. 赤色の四角は convex hull から 50 meV/atom までの範囲の構造を示す.

多様性を保ちつつ形成エネルギーの低い結晶構造を選 抜する.提案手法の詳細については文献²⁰⁾を参照い ただきたい.

提案手法を用いて Ti-O 系で合計 10000 構造をサン プリングした CSP 探索結果を図 2 に示す. TiO₂ 組成 では、形成エネルギーの低い順の 3 構造として、 mp-554278 (TiO₂(B)), mp-34688 (anatase), mp-2420244 (Pnma) が得られた. ここでは、CSP 探索で得られた構造が Materials Project²⁵⁾に掲載され ている構造とどれも一致していたため、material id で呼称している. CSP 探索にはプロトタイプ構造な どの事前情報は含まれていないが、TiO₂ 組成の形成 エネルギーの低い 10 構造の中にはいくつかの実験的 に知られている多形 (TiO₂(B), anatase, columbite, rutile)²⁶⁾ が再現されていた.

次のステップでは、0 K の convex hull の近くにあ る構造に対して自由エネルギー計算を行い、有限温度 での自由エネルギーを計算する。自由エネルギー計算 には、熱力学的積分を用いる^{27)~29)}.そして、圧力一 定下での自由エネルギーの温度依存性は、異なる温度 でのエンタルピーを積分することで計算する³⁰⁾.

Ti-O 系の CSP 探索で得られた TiO₂ 構造下位 10 構 造について、0 圧力下での自由エネルギーを計算し、 温度ごとに自由エネルギーが最小の構造を取った結果 を図3に示す.また、液相の自由エネルギー計算も行 い、固相と比較することで融点計算も行っている.

0K convex hull における上位3構造 (TiO₂(B), anatase, Pnma構造)が固相としては安定という結果 だが、実験的には大気圧下で安定な TiO₂構造は rutile である.ここでは有限温度効果を古典統計の方 法で出来る限り扱っているが、固相間の自由エネルギー

図3 温度ごとの自由エネルギー最小 TiO2 構造

差は非常に微妙³¹⁾で、実験で得られる相を再現する には精度が不十分であると考えられる.これら酸化物 の多形を比較するためには、実験で得られた形成エン タルピーを元にした補正³²⁾やより正確な DFT 汎関 数での訓練がさらに必要であると考えられる.

以上, PFP と遺伝的アルゴリズムに基づいた手法 を用いて, 組成空間全体で CSP 探索をする例を示した. そして, PFP と遺伝的アルゴリズムを組み合わせた 本手法で見つけた TiO₂構造に対しても自由エネルギー 計算を適用し, 融点と各温度における自由エネルギー が最小の構造を求めた.

4. おわりに

本稿では、Preferred Networks (PFN)が開発し た汎用機械学習ポテンシャル PFP を用いた格子熱伝 導率計算の精度検証と結晶構造探索について紹介した. これらの取り組みが、AI 技術と計算材料科学の連携 による研究開発の一例として参考にしていただけると 幸いである. 今後も Matlantis を通じて汎用的な技術 開発を進め、材料開発を加速させるお役に立てればと 考えている.

注 記 PFP v6 は、産業技術総合研究所の人工知能橋渡 しクラウド (AI Bridging Cloud Infrastructure, ABCI) と Preferred Networksの自社スーパーコンピューターを使用して 開発された。

献

- 1) S. Takamoto et al., Comput. Mater. Sci., 207, 111280 (2022).
- 2) S. Takamoto et al., Nat. Commun., 13, 2991 (2022).

文

3) R. Jacobs et al., Curr. Opin. Solid State Mater. Sci., 35,

101214 (2025).

- https://tech.preferred.jp/ja/blog/lattice-thermalconductivity-calculation-with-pfp/
- 5) A. Merchant et al., Nature, 624, 80 (2023).
- 6) H. Yang et al., arXiv:2405.04967 (2024).
- 7) L. Barroso-Luque et al., arXiv:2410.12771 (2024).
- 8) J. Riebesell et al., arXiv:2308.14920 (2024).
- 9) https://matbench-discovery.materialsproject.org/
- 10) B. Póta et al., arXiv:2408.00755 (2024).
- 11) https://github.com/MPA2suite/k_SRME
- 12) A. Togo et al., Phys. Rev. B, 91, 094306 (2015).
- 13) A. Togo et al., J. Phys. Condens. Matter, 35, 353001 (2023).
- 14) https://github.com/phonopy/phono3py
- 15) https://mdr.nims.go.jp/collections/7s75dk391
- 16) X. Fu et al., arXiv:2502.12147 (2025).
- 17) J. Li et al., arXiv:2503.11568 (2025).
- 18) A. R. Oganov et al., Nat. Rev. Mater., 4, 331 (2019).
- 19) A. Jain et al., Nat. Rev. Mater., 1, 15004 (2016).
- 20) T. Shibayama et al., arXiv:2503.21201 (submitted, 2025).
- C. J. Pickard et al., J. Phys.: Condens. Matter., 23, 053201 (2011).
- 22) S. Fredericks et al., Comput. Phys. Commun., 261, 107810 (2021).
- 23) A. R. Oganov et al., J. Chem. Phys., 124, 244704 (2006).
- 24) K. Deb et al., IEEE Trans. Evol. Comput., 18, 577 (2014).
- 25) A. Jain et al., APL Mater., 1, 011002 (2013).

- 26) A. Reinhardt, J. Chem. Phys., 151, 064505 (2019).
- 27) D. Frenkel et al., J. Chem. Phys., 81, 3188 (1984).
- 28) R. Freitas et al., Comput. Mater. Sci., 112, 333 (2016).
- 29) R. Paula Leite et al., J. Chem. Phys., 145, 194101 (2016).
- 30) B. Cheng et al., *Phys. Rev. B*, **97**, 054102 (2018).
- 31) Y. Zhang et al., J. Chem. Phys., 150, 014105 (2019).
- 32) A. Wang et al., *Sci. Rep.*, **11**, 15496 (2021).
- 33) I. Batatia et al., arXiv:2401.00096 (2023).

筆者紹介

篠原 航平(しのはら こうへい)

2018年,京都大学工学部物理工学科を卒業. 学士(工学).2020年,京都大学大学院工学研究 科材料工学専攻を修了.修士(工学).2023年, 京都大学大学院工学研究科材料工学専攻を修了. 博士(工学).2023年より株式会社 Preferred Networks にリサーチャーとして勤務.専門:計 算科学に基づく結晶構造探索,計算結晶学,科学 ソフトウェア開発.

[連絡先] 〒100-0004 東京都千代田区大手町 1丁目 6-1 大手町ビル 株式会社 Preferred Networks

E-mail : kshinohara@preferred.jp