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1. はじめに

　全固体電池は，高い安全性と高入出力特性を兼ね備
えた次世代蓄電池として期待されている．しかし現状
では，固体電解質と電極材料界面の安定化のため，高
いセル拘束圧が必要であり，低拘束圧での作動実現が
求められている．近年，そのような低拘束圧作動を可
能とする方法論として，無体積変化正極材料が報告さ
れている 1）．本稿では，無体積変化材料の一例として
バナジウム系リチウム過剰正極材料 Li8/7Ti2/7V4/7O2 を
紹介し，同材料を用いることで低拘束圧化でも安定作
動する全固体電池の可能性について概説する．

2. バナジウム系岩塩型材料の合成

　 バ ナ ジ ウ ム 系 リ チ ウ ム 過 剰 正 極 材 料 で あ る
Li8/7Ti2/7V4/7O2 は，層状材料 Li2TiO3（Li4/3Ti2/3O2）と
LiVO2 の固溶体の一種である．固相焼成法によって合
成した試料は層状材料となっているが，バナジウム系
材料では充電に伴い，バナジウムイオンが固体中を移
動するため，カチオン不規則配列岩塩型構造に相転移
することが知られている 2）．岩塩型構造ではリチウム
層中にバナジウムイオンが存在し，リチウムイオンの
固体中での移動を阻害するため，電池材料としての性
能が低下する．この問題を解決する有効な手法として，
材料のナノサイズ化と比表面積の増大が挙げられる．
そこで，高結晶性の試料を原料とし，メカニカルミリ
ングによってナノサイズ試料を調製した．得られた試

料の X 線回折図形と走査型電子顕微鏡像を図1に示す．
得られた試料の回折線幅は大きく広がっており，低結
晶性であることが確認できる．また，結晶構造も層状
構造ではなく，岩塩型構造に近い状態となっているこ
とも確認された．電子顕微鏡像からも，試料がナノサ
イズ化していることが観察された．メカニカルミリン
グは材料の大量合成には適さないものの，現在では液
相合成によって高活性なナノサイズ試料を直接合成で
きることも報告されている 3）．

3. バナジウム系岩塩型材料の反応機構

　得られたナノサイズ Li8/7Ti2/7V4/7O2 の電気化学特性
を，通常の液体電解質を用いたセルにより評価した結
果，300 mA h g–1 という非常に大きな可逆容量が得
られることが確認された．さらに，岩塩型構造である
にもかかわらず優れたレート特性を示すことが明らか
となっている 1）．ナノサイズ Li8/7Ti2/7V4/7O2 の充放電
反応機構を詳細に調べた結果を図 2–図 3に示す．図 2
に示した operando X 線回折測定の結果より，本材料
は固体中から多量のリチウムイオンを脱挿入する高容
量材料であるにもかかわらず，その充放電過程におい
て回折線位置のシフトが認められないことがわかった．
回折線の強度には変化は見られるものの，その位置が
変化しないことは，充放電時の体積変化を生じない，“無
体積変化材料”であることを示す結果である．
　図 3 には充放電過程における反応機構を X 線全散
乱法により解析した結果を示す．Li8/7Ti2/7V4/7O2 では，
バナジウムイオンの初期酸化数は +3 であり，充電時
には V3+/V5+ の二電子固相酸化還元反応が進行するこ
とで，反応が進行する．V3+ イオンは六配位サイトを
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図 1	 ナノサイズ Li8/7Ti2/7V4/7O2 の X 線回折図形と走査型
電子顕微鏡像 Reproduced with the permission of 
Springer Nature from I. Konuma et al., Nature 
Materials, 22, 225（2023）．Copyright 2023 Springer 
Nature.
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ナジウムイオンとの相関に対応するものであると考え
られる．このようなバナジウムイオンの移動は可逆的
であり，放電時には再び六配位サイトに戻ることが確
認されている．
　このような充電時に生じるバナジウムイオンの酸化
およびそれに伴うサイト移動は，Li8/7–xTi2/7V4/7O2 が
特異的に無体積変化の材料となりえる主要因である．
充電時に伴うバナジウムイオンの酸化およびリチウム
イオンの脱離が進行することで，イオン半径の減少と
自由体積の増加が生じ，これは体積収縮を引き起こす．
この現象は，岩塩型 LiVO2 において充電時に約 2％の
体積収縮が観測されることからも確認されている．一
方で，リチウム過剰岩塩型 Li2VO3（Li1.33V0.67O2）では，
充電時に約 3％の体積膨張が生じることが報告されて
いる．これは，充電時に生成するイオン半径が小さい
V5+ イオンが，元々の六配位サイトから隣接する四配
位サイトに移動することによって，近接イオンとの反
発的な静電相互作用が増大し，結果として体積膨張を

占有しているが，酸化により生成する V5+ イオンはイ
オン半径が小さく，六配位サイトでは不安定となる．
そのため，面共有する隣接した四配位サイトに移動す
ることで安定化される．
　図 3 に X 線全散乱データをフーリエ変換すること
で得られる二体分布関数も示しているが，このバナジ
ウムイオンの移動と配位環境の変化が明確に観察され
ている．約 2.0 Å 付近に明確なピークが観測されてお
り，これはバナジウムおよびチタンイオンが六配位サ
イトを占有し，酸化物イオンとの相関を示しているこ
とに対応している．充電時にはこのピーク強度が減少
し，より短い距離側に新たにピークが出現する．これ
はバナジウムイオンが四配位サイトに移動したことを
示す結果である．また，約 3.5 Å 付近にも新たなピー
クの出現が確認されており，これは六配位のバナジウ
ムおよびチタンイオンと，四配位サイトに移動したバ

図 2	 ナ ノ サ イ ズ Li8/7–xTi2/7V4/7O2 の 充 放 電 時 に お け る
operando X 線回折図形（a）対応する充放電曲線と広範
囲における測定結果，（b）X 線回折図形の拡大図 
Reproduced with the permission of Springer Nature 
from I. Konuma et al., Nature Materials, 22, 225

（2023）．Copyright 2023 Springer Nature.

図 3	 ナノサイズ Li8/7–xTi2/7V4/7O2 の充放電時の局所構造変
化の模式図と X 線全散乱測定により得られた二体分
布関数（PDF）Reproduced with the permission of 
Springer Nature from I. Konuma et al., Nature 
Materials, 22, 225（2023）．Copyright 2023 Springer 
Nature.
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無体積変化材料と高イオン伝導性を有する固体電解質
を組み合わせることで，低拘束圧化で作動可能であり
ながら，従来のリチウムイオン電池よりも急速に充放
電可能で，安全性にも優れた新しい全固体電池の実現
が期待される．

　謝　辞　Operando X 線回折測定は UNSW の Neeraj Sharma
氏により行われたものであり，感謝の意を表する．
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引き起こすためと考えられる．
　これらの充放電に伴う体積収縮と膨張の傾向は，酸
化物材料中のリチウムイオンの量と相関があることが
知られている 1）．固体中のリチウムイオン含有量が多
く，同時に遷移金属イオンの含有量が少ない場合，結
合のイオン結合性が強まり，体積膨張の傾向が顕著と
なる．一方で，リチウムイオンの含有量が少なく，同
時に遷移金属イオンが多い組成では，結合の共有結合
性が高くなり，体積収縮の傾向が支配的になる．この
ような傾向は材料の熱膨張挙動にも共通しており，共
有結合性の高い物質に比べて，イオン結合性の高い物
質は一般に大きな熱膨張係数を示す．その結果，適切
なリチウム過剰量を有する Li8/7Ti2/7V4/7O2 では，収縮
と膨張という相反する現象の均衡によって，特異的に
無体積変化の材料となっている．このような特異的な
相変化挙動は，等方的な三次元骨格を持った不規則配
列岩塩型構造においてのみ観測される現象であるとい
える．

4. 無体積変化材料を用いた全固体電池

　このような無体積変化という特徴が特に有効に発揮
される重要な応用例が，電解質として無機固体電解質
を用いる全固体電池である．一般的なリチウムインサー
ション材料は，充放電に伴って体積変化を生じるため，
固体電解質との安定な界面を維持するには高いセル拘
束圧が必要となる．一方で，Li8/7Ti2/7V4/7O2 のように
充放電時に体積変化を示さない材料であれば，こうし
た高拘束圧も必要としない運用が可能になると期待さ
れる．実際に Li8/7Ti2/7V4/7O2 を正極材料として，硫化
物系固体電解質である Li6PS5Cl を用いて作製した全
固体電池では，図 4に示すように，初回サイクルにお
いて 300 mA h g–1 の可逆容量が得られ，700 サイク
ル後でも容量劣化が全く見られないという，極めて優
れたサイクル特性が確認されている 1）．これらの結果
は予備的な検討段階のものであり，測定時には 200 
MPa という高拘束圧を印加しているが，拘束圧を 1 
MPa 以下に低減した条件においても，Li8/7Ti2/7V4/7O2

を正極材料に用いた全固体電池は可逆的にサイクル可
能であることが確認されている 1）．
　さらに，硫化物固体電解質は酸化されやすいため，
Ni/Co 系層状材料を用いる場合には LiNbO3 などで表
面被覆が不可欠である．しかし，Li8/7Ti2/7V4/7O2 では
特にそのような被覆も必要としないという利点を有し
ている 1），3）．また，負極材料でも従来から知られてい
たチタン系酸化物に加え 4），比較的低電圧で作動する
無体積変化材料の存在が報告されている 5）．これらの

図 4	 ナノサイズ Li8/7–xTi2/7V4/7O2 の全固体電池評価結果．
硫化物固体電解質 Li6PS5Cl と LixIn 負極を用いて評価
を行っている．電流密度は 60 mA g–1，（a）充放電曲
線と（b）容量維持率 Reproduced with the permission 
of Springer Nature from I. Konuma et al., Nature 
Materials, 22, 225（2023）．Copyright 2023 Springer 
Nature.
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