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1. はじめに

　リチウムイオン二次電池（LIB）の需要拡大に伴い，
電池材料に使用される金属資源の消費量増大が予測さ
れている 1），2）．そのため，資源使用量の削減と循環利
用の重要性が一層高まっている．とくにニッケルとコ
バルトは代表的な正極材料である層状酸化物に広く用
いられており，資源制約と性能を両立するための技術
開発が求められている．本報では NiCoMn 層状三元
系正極材料を中心に，化学組成と基本特性の関係を概
説する．さらに，資源対策と高性能化を両立させるた
めのコバルトフリー化の取り組みと今後の展開につい
て議論する．

2. 層状酸化物系正極材料

　代表的な層状酸化物系正極材料である LiCoO2，
LiNiO2 およびその類縁体はα-NaFeO2 型に分類され
る層構造をもつ．LiMO2（M: Ni，Co など）では，立
方密充填酸素格子内の八面体サイトにリチウムイオン
と遷移金属イオンが半分ずつ配列して層構造を形成す
る（図 1（a））．電子状態に着目すると，形式酸化数＋
3 の遷移金属イオンが酸化物イオンと共有結合を形成
することで MO2 層を構築し，それらの間にリチウム
層が挟み込まれることで静電的相互作用により層構造
が安定化される．
　Ni，Co，Mnからなる層状三元系正極材料の代表例

である LiNi1/3Co1/3Mn1/3O2（NCM111）は，端成分と
されるLiNiO2，LiCoO2，LiMnO2 の電子状態Ni3+（d7），
Co3+（d6），Mn3+（d4）とは異なり，特徴的なNi2+（d8），
Co3+（d6），Mn4+（d3）の電子状態を取る．遷移金属イ
オン間の相互作用により，層内では Ni2+，Co3+，Mn4+

が秩序配列し，図 1（b）に示す［√3×√3］R30°の超格
子構造を形成する 3）～5）．
　一方，結晶構造を MO6 八面体で表現すると LiMO2

層構造の MO2 層とリチウム層の二次元的関係が可視
化できる（図 1（c））．層構造は二次元的なリチウムイ
オンの通り道を持っているため，固相酸化還元反応に
伴い結晶の基本骨格を変えることなくリチウムイオン
を可逆的に出し入れすることができる．このような反
応様式をトポタクティック反応と呼び，リチウムイオ
ン二次電池が繰り返し充放電に強い長寿命が実現でき
るのはこの反応様式に由来する 5），6）．
　層状三元系正極材料 NCM111 の充放電曲線を図 2
に示す．リチウム金属を対極に用いた二極式電気化学
セルで評価した．充電に伴い正極材料から電子が引き
抜かれて酸化されると，電荷補償のため結晶格子から
リチウムイオンが放出される．すべてのリチウムイオ
ンが引き抜かれて一電子反応で充電反応が進行したと
仮定すると，算出される容量は 278 mAh g-1 となる．
この容量は化学原理とファラデーの法則に基づき算出
される値であり，理論容量と呼ばれる．図 2に示すよ
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図 1	 LiMO2（M：遷移金属イオン）のα-NaFeO2 型層構造．
（a）単位格子の繰り返しで描かれた層構造，（b）
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相互作用に起因する合成上の困難を克服するため，
当時としては新しい手法であった水酸化物共沈法を
導入して合成された 13）．LiNi1/2Mn1/2O2 は LiNiO2 と
LiMnO2の固溶体から推察されるNi3+とMn3+ではなく，
ニッケルとマンガンの特徴的な相互作用の結果，Ni2+

とMn4+ からなる安定化合物であることが明らかとなっ
た 5）．そこで LiNi1/2Mn1/2O2 の特長を維持しながら結
晶相の形成を促進するためにコバルトを導入すること
で，化学組成と結晶構造の両面からバランスのとれた
LiNi1/3Co1/3Mn1/3O2 としたのが層状三元系正極材料の
始まりである 3）． したがって，LiNiO2-LiCoO2-

LiNi1/2Mn1/2O2 を端成分とする固溶体として NCM が
材料化されるため，幅広い化学組成の中で電池性能
を最適化することが可能となる．図 3に一連の NCM
の可逆電極電位を示す．この電位は，充放電後に休
止して測定した開回路電圧であり，可逆挙動が確認さ
れたことから可逆電極電位と定義した．合成材料が
Ni2+ と Mn4+ からなるNCM111 が一連のNCMの中で
最も高い電位を示し，NCMの可逆電極電位は LiNiO2

と LiCoO2 の間に位置していることが分かる．NCM
は 4.4 V 以上の高電位領域で LiCoO2 と類似した電極
電位を示し，NCM111 からコバルト割合を低減する
ことによりこの領域の電位が低下する傾向が認められ
る．一方，3.5～4.3 V の範囲の NCM の電極電位は
NCM111 と LiNiO2 の間に位置し，遷移金属の化学組
成に依存して電極電位が変化することが分かる．ニッ
ケルとマンガンの相互作用が酸化還元反応に影響を及
ぼしていることが示唆される．このことから，ニッケ
ルとマンガンの電子状態変化を反映したNi/Mn比率と，
それとは独立した Co 割合の二軸で NCM の化学組成
を制御することで電池要求性能に応じた最適化学組成

うに，充電終止電圧を Li 基準 4.9 V に設定した場合
には理論容量に近い充電容量が得られる．しかし，4.9 
V 充電後に放電させた場合にはリチウムの過剰引き抜
きによる抵抗上昇のため可逆性が低下する．充電終止
電圧を 4.2 V に設定して充放電を行うと，充電曲線と
放電曲線がほぼ一本に集約されるほど抵抗が小さくな
り，不可逆容量と呼ばれる初回の容量損失の後 150 
mAh g-1 の容量で安定して充放電させることが可能で
ある．LIB は電圧，温度，電流を一定の範囲に制限す
ることで優れた特性，充放電サイクル寿命を示すこと
が知られている．一方，NCM111 は遷移金属イオン
間の相互作用と，それによる特徴的な電子状態の結果，
充電終止電圧を 4.6 Vに設定した場合でも 200 mAh g-1

を超える高容量で安定に充放電させることが可能であ
る 4），5）．多くの正極材料は高い充電終止電圧で高容量
充放電させた場合に急激に劣化が進むことから，この
高電位，高容量充放電がNCM111の魅力の一つであり，
電池正極材料として注目を集めた理由である．
　層状酸化物におけるコバルトの必要性は，LiCoO2

に固有の結晶学的要因に起因する層構造の高い安定性
に由来し，その結果として長寿命化と低抵抗化が実現
される点にある 7）．一方，LiNiO2 は Ni2+ がリチウム
層に混入するカチオンミキシングが起こりやすく，構
造安定性，電気化学特性が損なわれることが知られて
いる 8），9）．そこで LiCoO2 との固溶体 LiNi1-yCoyO2（0＜
y＜1）を形成することで層構造の安定性を向上させ，
高容量かつ低抵抗のニッケル系正極材料とする材料
改質が広く利用されている 10）～12）．この知見は層状三
元系正極材料 NCM の材料設計でも生かされている．
新たに材料化に成功し，2001 年に報告された
LiNi1/2Mn1/2O2 は結晶中のニッケルとマンガンの強い

図 2	 層状酸化物 LiNi1/3Co1/3Mn1/3O2 の充放電曲線と Li 引
抜様式．充電終止4.2，4.6，4.9 Vの挙動を重ねて表記．

LiMO2 Li1-xMO2 MO2

図 3	 層状三元系正極材料のNi/Co/Mn組成と可逆電極電位．
LiCoO2 と LiNiO2 の結果を比較として示す 11）．
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を有することを示している．
　なお，層状酸化物では層構造の安定化にコバルト導
入が有効であるのに対し，三次元骨格では安定化，活
性化の機構が異なるため，コバルトによる補強は不要
である．特に LiFePO4 は鉄資源の豊富さ，廉価，低
環境負荷の観点から注目され，大型電池用途で広く実
用化されている．

4. 持続可能な社会の実現に向けた技術革新

　LiMn2O4 類縁材料 Li1.1Al0.1Mn1.8O4 は 4 V 付近で 110 
mAh g-1の容量を示し，LiFePO4 は 3.4 Vで165 mAh g-1

を示す．いずれも層状酸化物に比べてエネルギー密度
が低く，その要因は LiMn2O4 類縁材料では低容量，
LiFePO4 では低電位であることに起因する．コバルト
フリー正極材料が低エネルギー密度とされるのは，低
容量の三次元骨格，低電位の鉄系材料を用いているた
めである．
　一方，図 5（c）に層構造をもつコバルトフリー正極
材料 LiNi1/2Mn1/2O2 の充放電曲線を示す．合成条件を
工夫することで NCM111 に匹敵する性能を示し，将
来的に NCM 系を超える可能性を有する正極材料であ
る 20）．近年では層状高ニッケル系正極のさらなる性
能向上を目指し，コバルトフリーの LiNiO2 の開発も
進められている．LiNiO2 は 1993 年に高活性正極材料
の合成条件が提案され，高容量動作のメカニズムが解

を決定することができる．
　LIB の高エネルギー密度化とコバルト資源対策の両
面から，層状三元系正極材料のニッケル割合の増大，
いわゆる高ニッケル系正極材料の開発が活発である．
電解液の副反応抑制の観点から充電終止電圧を制限し
た条件での高容量化が検討されており，図 3の可逆電
極電位が化学組成決定に有用となる．図 4に代表的な
層状三元系，高ニッケル系正極材料の 4.3 V 充電後の
放電曲線を示す．LiNi1/3Co1/3Mn1/3O2 の放電容量 160 
mAh g-1 から LiNi0.9Co0.05Mn0.05O2 では 225 mAh g-1 に
増大することが分かる．高ニッケル系正極材料は，特
に高性能電池用途で精力的に開発されている 14）．

3. 三次元骨格を持つ正極材料

　層状酸化物系正極材料は結晶構造中に多くのリチウ
ムイオンを含むため高容量化が期待できるものの，二
次元骨格であるために深い充放電では構造劣化が進行
しやすい14），15）．このため，電解液分解抑制と合わせて，
実用上は充電終止電圧を制限し，高容量と長寿命の両
立を図っている．しかし，外部制御の不具合により過
充電状態に至った場合には，層状酸化物系正極は依然
としてリチウムを脱離し得るため，電池の不安全化を
招く可能性がある 16）．この問題を回避するため，三
次元骨格を有する正極材料も広く検討されてきた．代
表的な構造として，スピネル型（LiMn2O4）とオリビ
ン型（LiFePO4）が挙げられる（図 5（a）（b））17），18）．
これらではリチウムイオンが一次元あるいは三次元の
トンネルを介して移動する．三次元骨格はリチウムを
完全に脱離した状態でも結晶が安定に保たれるため，
図 5（c）に示すように LiFePO4 と LiMn2O4 類縁材料

（Li1.1Al0.1Mn1.8O4，LiNi1/2Mn3/2O4）では充電末期に電
位の立ち上がりが観察される 19）．これは電子とリチ
ウムイオンが限界まで引き抜かれることで絶縁体化す
る現象に対応しており，三次元骨格正極が過充電耐性

図 4　層状三元系正極材料のNi/Co/Mn 組成と放電容量．

図 5	 三次元骨格を持つ正極材料の結晶構造：（a）スピネル
型構造，（b）オリビン型構造．（c）コバルトフリー正極
材料の充放電曲線．
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し，系統的な探索を通じて元素間の組み合わせ効果が
明らかにされてきた．その結果，化学組成，結晶構造，
粒子形態制御により優れた材料が創出されている．今
後は，省資源化と循環利用の要請を背景に「単一金属
系材料の高度利用」への回帰が進むと考えられる．そ
のため，材料の反応空間を精密に制御し，反応メカニ
ズムと粒子形態の両面から最適化を図ることが，電池・
電極設計において一層不可欠となる．カーボンニュー
トラルの達成やサーキュラーエコノミーの実現に向け
たパラダイムシフトは，新たな材料体系の開拓と次世
代電池技術の発展を促し，電動化社会の持続的発展に
寄与すると期待される．
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能向上に関する研究が精力的に進められてきた 21）～24）．
層状酸化物の完成形ともいえる LiNi1/3Co1/3Mn1/3O2 を
経たのち，コバルト低減と高容量化を目的として，30
年の時を経て再び LiNiO2 が注目されている．
　層状 LiNi1/2Mn1/2O2 とスピネル型 LiNi1/2Mn3/2O4 は
ともにNi2+ と Mn4+ からなる酸化物であるものの，前
者は 3.7 V で高容量 200 mAh g-1，後者は高電位 4.7 
V で 135 mAh g-1 の容量を示す．このように結晶構
造の違いが正極特性に影響を及ぼす例は数多く知られ
ており，層状・スピネル・オリビン型がその典型であ
る．これらとは異なる枠組みの試みとして，無秩序岩
塩型正極材料が注目されている 25）．我々は特に，広
い酸化状態（＋2 – ＋7），多様な結晶多形，強固な
サプライチェーンを備えたマンガン系材料に着目して
きた 26）～28）．無秩序岩塩型リチウムマンガン酸化物
Li0.90Mn0.84P0.04O2 は，図 6に示すように LiMnO2 に特
徴的な傾斜状の放電曲線形状で 346 mAh g-1 の高容
量を示す 26）．LiMnO2 への Pドープで高容量，Bドー
プで優れた充放電サイクル寿命が得られる 28）．リサ
イクルの観点からも複数の遷移金属を含む複合系に比
べて単独系は工程を簡素化できる．非金属元素導入は
マンガン系酸化物に有効な戦略であり，次世代技術開
発，持続可能な電池技術実現に寄与することが期待さ
れる．

5. おわりに

　大型電池には，高エネルギー密度に加え，高出力・
急速充電特性，長寿命および高い安全性を兼ね備える
ことが求められる．これらは一般にトレードオフの関
係にあるが，電池開発によりそれらの両立が追求され
ている．正極材料の研究は金属元素の制約を出発点と

図 6　コバルトレス，フリー正極材料の放電曲線．
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