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1. はじめに

　ナトリウムイオン電池（NIB）は最も期待されてい
る次世代蓄電池の一つである．豊富な資源の材料で電
池を構築でき，コストが低い点が NIB の最大の魅力
である．最近，中国と日本では電気自動車用電源や携
帯型電池として NIB が製品化されてきている．ただし，
今後のさらなる普及拡大のためには NIB の利点を最
大限に活かせる電極材料を適用することが不可欠であ
る．酸化チタンと酸化鉄は資源豊富で安価なうえ，日
焼け止めや化粧品，磁性材料などに広く使用されてお
り，入手しやすい材料である．そこで筆者らはこれら
を NIB 負極材料に適用する取り組みを行っている．
本稿では酸化チタンと酸化鉄を基軸とした負極材料の
研究例について，結晶構造の観点から掘り下げて紹介
する．

2. 酸化チタン

　酸化チタン（TiO2）は多数の多形を有する．結晶格
子内への Li+ 吸蔵反応（インサーション反応）を示す
ブロンズ型やアナターゼ型の TiO2 は，NIB 負極とし
ても早期より検討されてきた 1），2）．一方，最安定相の
ルチル型 TiO2 は c 軸方向に高い Li+ 拡散能を有する
ものの，イオンの拡散が一次元方向に制限されるうえ
電子伝導性に乏しいため，そのまま使用しても低い性
能しか示さずほとんど注目されてこなかった．筆者ら
はこのような性質を持つルチル型 TiO2 に焦点を当て，
NIB 負極への適用を行った．その結果，結晶性向上と

Nb5+ のドープの工夫により，ルチル型 TiO2 が Na+ を
可逆的に吸蔵できるようになることを初めて見出した3），4）．
　この発見を嚆矢として，筆者らは材料化学的な考え
方に基づきルチル型 TiO2 の魅力を引き出す種々の取
り組みを行った．まず，Nb5+ 以外の不純物元素のドー
プの効果を調べるとともに 5），酸素欠損の導入がイオ
ン拡散経路のサイズを広げ，電子伝導性を改善できる
ことを確かめた 6）．電子伝導性の向上は充放電容量の
増加や高速充放電特性の改善に寄与する．また，TiO2

粒子の単結晶化 7）や一次・二次粒子の形状最適化 8）

が粒子内部への Li+ および Na+ 吸蔵量の増加を促すこ
とを解明した．三次元的なイオン拡散経路が存在する
アナターゼ型 TiO2 やスピネル型 Li4Ti5O12 とは異なり，
拡散経路が一次元方向に限定されるルチル型 TiO2 で
は単結晶化や粒子形状の最適化は充放電特性の向上に
おいて特筆すべき効用をもたらす．その証左として，
化粧品用素材として単結晶化されたルチル型 TiO2 が
アナターゼ型 TiO2 やスピネル型 Li4Ti5O12 を上回る良
好な負極性能を発揮することを明らかにした 9）．以上
の成果に基づき，筆者らはルチル型 TiO2 の性能を最
大限に引き出せる材料化学的方法論を確立した

（図 1）10）．特に，不純物元素のドープに関しては多彩
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図 1	 （a）ルチル型 TiO2 の結晶構造．（b）ルチル型 TiO2 の
負極性能を引き出すために筆者らが確立してきた材料
化学的工夫．
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りも高い Na+ 拡散係数（DNa+）が得られた．中でも，
Ni-doped TiO2 の場合において DNa+ が最も高くなる
ことを確かめた．
　図 3は単結晶の Ni-doped TiO2 からなる負極の Na+

吸蔵－放出反応における電位変化を示す．Li+ 吸蔵時
には層状岩塩型構造の LixTiO2 への相変化が起こる
が 13），Na+ 吸蔵時にはルチル型構造を維持するた
め 3），10），14），単相反応に由来するなだらかな電位カー
ブが見られるのが特徴的である．これは，サイズの大
きい Na+ が格子中に入ることでルチル型の結晶構造
が安定化されるためと推測される．比較のために評価
した undoped TiO2 負極においては理論容量（335 
mA h g-1）の半分程度の初期放電容量しか得られなかっ
た．他方，Ni-doped TiO2 負極はドープにより①拡散
経路サイズの拡大，②電子伝導性の向上，③ Na+ 拡
散能の改善の効果を享受することで，初期サイクルか
ら理論容量に近い 317 mA h g-1 の放電容量を達成した．
ドープの効果は高速充放電特性においても顕在化し，
Ni-doped TiO2 負極は通常の 50 倍もの急速充放電条
件（50C）においても 135 mA h g-1 の容量を維持す
ることを確かめた 12）．
　図 4は長期耐久性を評価した結果を示す．高い電流
密度での評価のため初期サイクルでは TiO2 中の Na+

拡散が追い付かず 400 サイクルまでは容量が増加する
現象が見られたが，それ以降は 10000 サイクルもの長
い充放電サイクルにわたり Ni-doped TiO2 負極は
undoped TiO2 負極より高い性能を維持できることが
わかった．これは，1 日 1 回充放電を行う使用におい
て約 30 年の電池寿命に相当するものである．

な元素が使用できるうえ，2 種の元素の共ドープも可
能であるため 11），学術的にも非常に興味深い．その
最近の成果を以下に解説する．
　ルチル型 TiO2 において Nb5+ や Ta5+ をはじめ 17
種類以上の遷移金属元素が Ti4+ の一部を置換固溶で
きることを確認している．それらの不純物元素のドー
プは① Na+ 拡散経路のサイズを広げ，②電子伝導性
を改善する効果があることを確認している．また，
Na+ の拡散挙動にも影響を与えることが示唆されてい
る5）．そこで本研究では，価数の異なる不純物元素（Nb5+，
Ta5+，Al3+，Ni2+）をドープし，これが Na+ の拡散挙
動に与える効果を実験と計算の両面から調べた．
　第一原理計算には市販のソフトウェアである
Advance/PHASE を用い，ルチル型 TiO2 の結晶構造
中の Ti4+ の 12.5％を不純物元素（Nb5+，Ta5+，Al3+，
Ni2+）で置換した計算体系を構築した．図 2（a）はその
拡散経路を Na+ が移動する際の格子のエネルギー変
化を示す 12）．Na+ の移動経路は Nudged Elastic Band

（NEB）法により計算した 13）．ドープ無しの酸化チタ
ン（undoped TiO2）の場合は 0.5 の位置においてエネ
ルギー変化が最大となることを確認した．これは，
Na+ が Ti4+ と最も接近し，カチオン間の静電反発が
生じるためである．不純物元素の価数の減少にともな
いエネルギー変化が小さくなり，Ni2+ をドープした場
合に最少となった．これは，価数の低い Ni2+ の場合
において，Na+ との正電荷反発が最も小さくなること
で，Na+ が拡散しやすくなることを示している．この
ことを定電流間欠滴定法により実験的に調べた結果を
図 2（b）に示す．ドープにより電子伝導性が向上する
ため，いずれの不純物元素の場合も undoped TiO2 よ

図 2	 （a）種々の不純物をドープしたルチル型 TiO2 の Na+ 拡散中のエ
ネルギー変化．エネルギー障壁の高さが小さいほど Na+ 拡散が
容易であることを示す．（b）Na+ 吸蔵反応におけるルチル型 TiO2

負極の Na+ 拡散係数．0.01-3.0 V の電位範囲における拡散係数
の平均値を図中に示す．
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Sb を Fe2O3 と複合化すると，Sb が電子と Na+ の伝導
を補いつつ，充放電時の Fe2O3 の体積変化で生じる応
力を緩和するため充放電性能が改善されることを見出
した 18），19）．ただし，Sb は希少金属の一種であるため，
これを使わない負極材料開発も望まれている．そこで
筆者は，酸化鉄の一種であり，資源豊富な元素のみで
構成されるナトリウムフェライト（NaFeO2）に着目
した．酸化鉄の老舗メーカーである戸田工業は種々の
鉄系材料を有しており，その一つに CO2 吸収材であ
る NaFeO2 があった 20），21）．そこで，これを NIB 負極
に適用する試みを行った．
　図 5（a）は戸田工業より提供された 2 種類の NaFeO2

の粉末写真と結晶構造を示す．α-NaFeO2 は層状岩塩
型構造をとり，β-NaFeO2 はウルツ鉱型類似の構造を
とる．これらを用いて作製した負極の充放電曲線を図5（b）
に示す．いずれの相からも同様の充放電カーブが得られ，
NaFeO2 が可逆的に充放電することを発見した．微粒
子化による性能改善は NaFeO2 においても有効であり，
遊星ボールミルを用いた粉砕処理によりその充放電容
量を 590 mA h g-1 にまで増加させることができた．
　NaFeO2 負極の反応機構は未解明であったため，充
電（Na 吸蔵）および放電（Na 放出）状態の in-situ 
X 線回折パターンにより反応機構を調べた．充電後お
よび放電後のβ-NaFeO2 負極では明瞭な回折ピーク
は出現しなかった（図 6（a））．α-NaFeO2 負極の結果
も同様であった．そこで，ラマン分光測定を実施した
結果，α-NaFeO2 とβ-NaFeO2 はいずれも充放電後に
はFe2O3相に変化していることを明らかにした（図6（b））．
以上の結果から，NaFeO2 は初回充放電時に不可逆的
に相変化し（2NaFeO2→Fe2O3＋Na2O），以降のサイク
ルでは Fe2O3 のコンバージョン反応（Fe2O3＋6Na+＋
6e-→2Fe＋3Na2O）が進行することを見出した 22），23）．
　α-NaFeO2 はβ-NaFeO2 とは異なり Na+ 拡散経路
を有するため，正極としてインサーション反応に基づ
く充放電反応を示すことが以前より知られていた 24）．
したがって，これを正極と負極に用いれば，同じ物質
ながら異なる反応機構で Na+ を吸蔵－放出する画期
的な NIB を構築できると考えた．実際にα-NaFeO2

負極とα-NaFeO2 正極からなる NIB フルセルを作製
し評価した．その結果，正極ではインサーション反応
が起こり，負極ではコンバージョン反応が進行するた
め，可逆的に充放電させることに世界で初めて成功し
た（図 7）22），23）．その充放電性能は決して高いもので
はないものの，鉄を中心とする資源豊富な元素のみで
構成された電極材料で NIB を構築できることを実証
した成果は大きな意義を持つ．

3. 酸化鉄

　鉄は地球で最も多量に存在する元素であり，地表付
近においては酸化鉄相として豊富に産出される．特に，
α-Fe2O3（ヘマタイト）は入手しやすく，化粧品や陶
磁器の赤色顔料としてだけでなく，磁気記録や触媒の
分野においても有用な材料である 15）．
　Fe2O3 が Li+ や Na+ を吸蔵する際には不均化反応が
起こり，金属の Fe と Li2O や Na2O が形成される．こ
れはコンバージョン反応と呼ばれる 16）．放電時にこ
の逆反応が起これば，理論容量は 1007 mA h g-1 もの
非常に大きな値となる．しかしながら，Fe2O3 の電子
伝導性は非常に乏しいうえ，コンバージョン反応は化
学結合の切断と再構築をともなう遅い反応であり，ま
た，充放電時の体積変化が大きく活物質層が崩壊しや
すいため，Fe2O3 が Li+ や Na+ と充分に反応できず低
い充放電容量しか示さないことが知られていた．この
問題に対し筆者らは，① Fe2O3 の微粒子化により電解
液との広い接触面積を確保し Na+ との反応性を高め
ると高容量化が図れることを確認した 17）．また，②

図 3	 3 at.％の Ni をドープした TiO2 からなる負極の充放電
曲線．ドープ無し TiO2 負極の結果も併せて示す．

図 4　Ni-doped TiO2 負極の長期充放電サイクル性能．
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バルト（Co）やニッケル（Ni）についても供給不安
を抱える．実際に 2020 年以降，これらの資源不足に
よりリチウムイオン電池の価格高騰が発生している．
したがって，資源に乏しい我が国にとって，資源的制

4. おわりに

　リチウムイオン電池は，高いエネルギー密度を有す
るものの，リチウムの資源だけでなく正極に用いるコ

図 7	 正極と負極にα-NaFeO2 を用いた NIB の（a）充放電曲線と（b）Na
吸蔵－放出メカニズム．

図 6	 （a）β-NaFeO2 負極の初回サイクルにおける充電（Na 吸蔵）お
よび放電（Na 放出）状態の in-situ X 線回折パターン．（b）充
放電後のα-NaFeO2 負極とβ-NaFeO2 負極のラマンスペクトル．

図 5	 α-NaFeO2 とβ-NaFeO2 の（a）粉末写真および結晶構造，（b）負
極ハーフセルの充放電曲線．
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約の少ない材料で作製できるナトリウムイオン電池を
開発する意義は大きい．本稿では入手しやすく安価な
材料として酸化チタンと酸化鉄を取り上げ，これらが
有望な負極となり得ることを述べた．また，その性能
を最大限に引き出すには不純物のドーピングや微粒子
化が有効であることを紹介した．これらの酸化物系負
極材料は次世代の全固体電池にも適用可能であ
り 25）～27），今後の発展性に富む．本稿で述べた知見が種々
の次世代蓄電池開発の一助となることを期待する．
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