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1. はじめに

　2021 年の本誌特集「マグネシウム二次電池の材料
開発の最前線：EQCM 法を用いた Mg2+ イオンの挿入・
脱離過程の解析」において，マグネシウム蓄電池の利
点と解決すべき課題，そして CuFe プルシアンブルー
類似体を中心に，フレームワーク構造を有するマグネ
シウム蓄電池用正極活物質の可能性について報告させ
ていただいた 1）．要点を再度述べると，マグネシウム
は空気に曝しても比較的安全な金属の中で最も低い標
準電極電位（約－2.36 V vs. SHE）を有し 2），3），また，
金属マグネシウムの理論容量は，単位質量あたり
2205 mAh g-1 あるいは単位体積あたり 3833 mAh cm-3

と大きく，マグネシウム金属を負極に用いるマグネシ
ウム蓄電池の実現により，現行の蓄電池に比べてエネ
ルギー密度の大幅な向上が期待される．しかしながら，
社会実装のための課題は，以下に示す通り当時からほ
とんど変わっていない 1），4），5）：

　1．マグネシウム金属の電析が可能な電解液の種
類が少ない．マグネシウムイオンはイオン半径が小
さく 2 価ということから推察されるように，極性の
高い溶媒にマグネシウム塩を溶解させた電解液にお
いて，安定な溶媒和状態からのマグネシウムイオン
の解離（脱溶媒和）およびマグネシウム電析が困難
である．
　2．マグネシウム電析が可能な電解液の電位窓（電
気化学的に安定な電位領域）は比較的狭く，高い酸
化還元電位を有する正極活物質の充電（酸化）時に

電解液の酸化分解が同時に進行する．
　3．マグネシウムの電析・溶解が，高いクーロン
効率で可能なグリニャール試薬ベースの電解液中に
は，腐食性のハロゲン化物イオン（特に塩化物イオ
ン）が高濃度で存在し，集電体の腐食を引き起こ
す 6），7）．
　4．マグネシウムイオンは，固体中で静電的な束
縛を強く受けるため拡散が遅く，電極活物質として
使用できる材料が限られる．

このような背景の中，近年，電解液については TFSA
（bis（trifluoromethanesulfonyl）-amide）塩／グライム
系の電解液や溶媒和イオン液体，さらにはフッ化アル
コキシボレート系もしくはフッ化アルコキシアルミネー
ト系電解液を中心に開発が進み 8）～16），3 V vs. Mg/
Mg2+ を越える酸化還元電位を有する正極活物質の評
価やマグネシウム金属を負極に使用したフルセルの構
築がなんとか行えるようになってきた．しかし依然と
して，充放電時に電解液の酸化／還元分解反応が少な
からず進行し，これがクーロン効率やサイクル特性の
著しい低下の原因となっている．

2. 正極活物質による電解液の酸化分解抑制

　2015 年に東北大学 金属材料研究所 市坪 哲教授ら
と共同で，MgCo2O4 などのスピネル型酸化物が酸化
還元電位およそ 2～3 V vs. Mg/Mg2+，理論容量およ
そ 260 mAh g-1 を有し 17），以下に示すように，その
放充電反応がスピネル型構造と岩塩型構造の二相反応
で進行することを明らかにした．

MgM2O4（spinel）＋x（Mg2+＋2e-）
⇄（1−x）MgM2O4＋xMg2M2O4（rock salt）

（M: Mn, Fe, Co）
この成果を皮切りに，2016 年～2023 年 JST ALCA-

SPRING（PO：魚崎 浩平 NIMS フェロー（当時），
TL：金村 聖志 東京都立大学教授（当時））のチーム
研究によって，スピネル型酸化物の組成と形態の制御，
コアシェル化，ナノサイズ化などにより，さらなる高
性能化や詳細なメカニズムの解析が進められた 18）～23）．
　この一連の検討の中で，筆者らは正極活物質である
スピネル型酸化物に含有される遷移金属イオンの種類
によって，電解液の酸化分解反応の進行のしやすさが
異なることを発見した 23）～25）．図 1は，Al 集電体にス
ピネル型酸化物 MgMn2O4，MgFe2O4，MgCo2O4 の粉
末を正極活物質として導電助剤とともに塗布した電極
と，活物質を塗布せずに Al 集電体のみを作用極とし
て用いて測定したサイクリックボルタモグラムである．
ここで，これらのスピネル型酸化物は放電（還元）ス
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タートの正極活物質であることに注意されたい．この
測定では電位の初期掃引方向を高電位側とするととも
に，4 V vs. Mg/Mg2+ の高電位（4.7 V vs. Li/Li+ に相
当）まで掃引することで，電解液の酸化分解反応を活
物質の放充電反応の前にあえて進行させている．図 1
のボルタモグラムは，作用極のみが異なる条件で測定
しており，電解液の組成に加えて温度などの他の条件
はすべて同じであるため，電解液が熱力学的に安定な
電位の範囲は等しいはずである．にも関わらず，電解
液 の 酸 化 分 解 反 応 が 進 行 し 始 め る 電 位 は，3.05

（MgMn2O4），3.59（MgFe2O4），3.27（MgCo2O4），3.80
（Al）V vs. Mg/Mg2+ と大きく異なる値を示した．この
ことは，作用極に担持しているスピネル型酸化物の種
類によって，電解液の酸化分解の進行のしやすさが異
なることを示している．すなわち，スピネル型酸化物
には電解液の酸化分解を促進する触媒作用があり，そ
の触媒活性の違いによって電解液の酸化分解に対する
過電圧が大きく変化し，結果として酸化分解が開始す
る電位に差が生じたと考えられる．その活性の大きさ
は Al 集 電 体 の み の 場 合 を 除 く と，MgMn2O4 ＞
MgCo2O4 ＞ MgFe2O4 の順となり，Fe イオンを含有
するスピネル型酸化物を用いた場合に電解液の酸化分
解が最も抑制されることが明らかとなった．
　上記現象をうまく利用すれば，電解液の溶媒や組成
を全く変えることなく，電解液が実質的に安定な電位
範囲を広げることができると考えられる．図 2は，こ
れらのスピネル型酸化物を正極活物質として用いて作
製した 3 電極セルの放電容量とサイクル数の関係であ
る．MgMn2O4 を用いた場合は最初の 10 サイクルで
放 電 容 量 が 急 激 に 低 下 し ほ ぼ ゼ ロ と な っ た．  
MgCo2O4 では放電容量の低下がやや緩やかではあっ
たものの，20 サイクルで放電容量はほぼゼロとなった．

図 1	 Al 集 電 体 に ス ピ ネ ル 型 酸 化 物（a）MgMn2O4，（b）
MgFe2O4，（c）MgCo2O4 粉末を正極活物質として塗布
した電極と（d）活物質を塗布せずに Al 集電体のみを
作用極として用いて 100 ℃，25 μV s-1 で電解液 0.3 
M［Mg（G4）］［TFSA］2/［Pyr1,3］［TFSA］中で測定し
たサイクリックボルタモグラム．

図 2	 スピネル型酸化物 MgM2O4（M: Mn, Fe, Co）を正極
活物質，Mg リボンを負極活物質，0.3 M［Mg（G4）］

［TFSA］2/［Pyr1,3］［TFSA］を電解液として用いた 3
電極セルの放電容量とサイクル数の関係．100 ℃，Cレー
トC/25，カットオフ電位1～3.2 V vs. Mg/Mg2+ で測定．
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なわち，正極活物質から電極への電荷移動により正極
活物質内に空軌道を形成した後， 電解液分子の
HOMO から正極活物質への電荷移動が進行する経路
の反応は速いと考えられる．この経路が発現する条件
は，正極活物質の VBM に対応する電位よりも電極の
電位 Φapplied を上げる（図下方向に動かす）ことである．
したがって，電解液の酸化分解電位は正極活物質の
VBM に依存し， VBM がより深い位置にあるほど電
解液の酸化分解電位は高くなることが予想される．
名古屋工業大学の中山将伸教授らによる計算により，
真空準位に対する VBM は MgCo2O4（－4.73 eV）＞
MgMn2O4（－4.92 eV）＞MgFe2O4（－5.32 eV） と求
められ 25），予想どおり，電解液の酸化分解電位が最
も高かった MgFe2O4 の VBM が最も深い位置にある
ことが明らかとなった．しかし MgMn2O4 と MgCo2O4

の VBM は 予 想 と 逆 の 順 序 と な り，MgMn2O4 の
VBM の方がやや深かった．以上の結果を総合すると，
電解液分子の HOMO は MgMn2O4 の VBM よりもや
や低いエネルギー位置に存在するのではないかと考え
られる．しかしそれだけでは，MgCo2O4 と MgMn2O4

を用いた場合に同じ電位で電解液の酸化分解が進行し
始めるはずであるが，図 1 では MgMn2O4 を用いた場
合の方がより低電位で酸化電流が流れている．
MgMn2O4 は MgCo2O4 や MgFe2O4 とは異なり，酸化
により Mg2+ イオンが少量脱離することを筆者らは報
告しており 17），VBM と HOMO の間の電位においても，
Mg2+ イオンの脱離をともなった活物質の酸化反応が
進行した可能性がある 25）．

4. さいごに

　本研究により，熱力学的に不安定な電位範囲で電解
液を使用する必要がある場合は，VBMが深いエネルギー
位置に存在する正極活物質を使用することで電解液の
酸化分解抑制が可能であることが示された．速度論的
に電解液を安定化させるアプローチの一つであるが，
これは実は社会実装されている蓄電池系においては常
套手段である．例えば，鉛蓄電池系において水素発生
反応に対して高い過電圧を有する Pb 系グリッド合金
を電極として使用することは，同様のアプローチであ
るし，メカニズムは異なるが，リチウムイオン電池系
における SEI（Solid Electrolyte Interphase）形成も，
電解液の熱力学的不安定さを補うための素晴らしい仕
組みである．言わずもがな現在社会実装されている蓄
電池系は，各材料が有する特性を最大限発揮できるよ
うに，さまざまな工夫がなされた技術の結晶である．
　本研究により，スピネル型酸化物中の Fe イオンが

一方でこれらとは対照的に，MgFe2O4 を用いた場合
は 60 サイクルで 50 mAh g-1 の放電容量を維持した．
図 1 で得られた電解液の酸化分解に対する触媒活性の
序列 MgMn2O4 ＞ MgCo2O4 ＞ MgFe2O4 と照らし合わ
せると，酸化分解に対する触媒活性が低いほどサイク
ル特性が改善することを示している．言い換えれば，
電解液をいかに安定化させるかということが，サイク
ル特性向上の鍵ということである．

3. 触媒活性の大小を決める因子

　次に，電解液の酸化分解に対する触媒活性を決定
する因子について考察する．図 3は電解液と正極に
おける電子エネルギー準位の模式図を示す．図の上側
ほど電子のエネルギーが高く，また電位は低い．今
回の系では，電解液の酸化分解が正極活物質であるス
ピネル型酸化物の酸化よりも低電位で進行することか
ら，電解液を構成する分子の最高被占軌道（HOMO: 
Highest occupied molecular orbital）は，基本的に，
正極活物質の価電子帯最大値（VBM: Valence band 
maximum）よりも高いと考えられる．作用極（正極）
の電位 Φapplied を上げていくと（図下側に下げていくと），
電解液を構成する分子の HOMO を下回ったところで，
HOMO から電極への電荷移動の駆動力が生じるが，
この電荷移動は極めて遅いと考えられる．その理由は，
もしこの電荷移動が十分に速ければ，図 1 に示したボ
ルタモグラムにおいて，電極の種類に依らず同じ電位
で電解液の酸化分解が進行し始めると考えられるから
である．しかし実際には，スピネル型酸化物の種類に
よって，電解液の酸化分解が進行し始める電位が変化
した．このことは，電解液を構成する分子の HOMO
から電極への電荷移動は，正極活物質を介する経路を
辿ることにより高速化されることを示唆している．す

図 3	 電解液（Electrolyte）と正極（PE: Positive electrode）
における電子エネルギー準位の模式図 24）．Licensed 
under CC BY 3.0.
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電解液の酸化分解抑制に有効であることやそのメカニ
ズムを明らかにした．さらに筆者は，東京科学大学 
館山佳尚教授らと協力して，具体例としてモノグライ
ム（Monoglyme or DME: 1,2-Dimethoxyethane）の
吸着と脱離およびその酸化分解過程を第一原理計算に
よって詳細に解析し，Mg2+ イオンの脱離によるスピ
ネル型酸化物の表面構造再構築による活性の大きな変
化に加え，DME の HOMO と MgMn2O4 の VBM が
近い位置に存在することが MgMn2O4 上で DME の酸
化分解が迅速に進行する理由であることを報告してい
る 26）．
　以上の知見を利用した成果が，筆者がセル評価グルー
プリーダーとして所属している JST GteX（PO：桑畑 
進 大阪大学 名誉教授，TL：市坪 哲 東北大学 金属
材料研究所 教授）のチームで次々と産み出されてい
る 27），28）．一方で，同様の考察を電解液の還元分解反
応に対して行ったところ，Fe イオンは電解液の還元
分解を促進する好ましくない作用も有することがわかっ
た 29）．これに加え，正極活物質中の遷移金属の種類
によって酸化還元電位が変化し，Fe イオンは Mn イ
オンや Co イオンよりも酸化還元電位がやや低い傾向
があるため，Fe イオンを含有しているとよい，とい
う単純な話ではない．今後マグネシウム蓄電池の社会
実装に向けて，エネルギー密度の最大化，充放電反応
のクーロン効率やサイクル特性の向上を目指して，最
適な活物質・電解液組成や各部材の組み合わせを多角
的に検討していく必要がある．
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